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1. ABSTRACT

In this final report, we summarize two years work developing
computational capability to handle viscous flow with an explicit
time;marching method based on the finite volume approach. For
attached flow, our findings have been extensively documented, and
our main object in this report is to present extensions to the
computational procedure to allow the handling of shock induced
separation and large regions of strong backflow. Two test cases
are considered, the UTRC separated and reattached turbulent
boundary layer and the strong shock case in the MDRL transonic
diffuser G. The extended method has worked well on the UTRC flow
with a boundary layer blockage of 58 percent and a maximum
backflow velocity of 37 percent of the local maximum free-stream
velocity. It has also worked well on the MDRL diffuser with a
shock Mach number of 1.353 and a maximum backflow velocity of

-71.7 m/s.

A Mach number dependent interpolation formula for effective
pressure has been developed for use in density-update time-
marching methods. This is a parallel development based on our
earlier stability analysis which resulted in the M&M interpolation

formula for effective density.
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2, DEVELOPMENT OF AN EXPLICIT TIME MARCHING PROCEDURE

FOR LAMINAR AND TURBULENT FLOW

- SUMMARY VIEWGRAPHS



AN EXPLICIT FINITE-VOLUME TIME-MARCHING PROCEDURE
FOR TURBULENT FLOW CALCULATIONS

Start: Denton explicit time-marching method.
Allure - easy to understand method.

Continuity

dp + Apu + dpv + dpw = 0
at 3x dy oz

S§p = [~ 3pu - dpv - dpw ] &t

ox oy (-1
Momentum
§(eu) = [steady eqn momentum error] &t
S{ov) = [ ] &t
S(ew) = [ ] §t




Start: Denton explicit time-marching method.

Questions:
1. Is smoothing necessary for convergence of explicit method ?
2. Why, at low Mach numbers, is the CFL criterion used to get the
time step for the momentum equations ?
{ 86t = 8x/[velocity + speed of sound] )
3. Why not extend the method to laminar and turbulent flow ?
What are the problems involved ?
4. Why does he use an interpolated pressure in the momentum
equation for transonic flow ?
Can we show why and when it is stable ?
5. How can the method be extended to separated flow ?

—6—




 ANSWER ——~—mm- >

Development of Explicit method for calculation of
Inviscid, Laminar or Turbulent Flow
Mach number = 0 to >2.5, including shocks
Economical - grid points
With or without separation

Tested on 2-d duct flows



1. Is smoothing necessary for convergence of explicit method ?

0 9 .
L8 ) sl
FLOW l
) o) 8
------ >
S o s i
o ®
Denton control volume "New"” control volume
4 unknowns e 3 unknowns °
3 equations 3 (well-posed) equations
YES NO

( "New" control volume, traditionally used for boundary layers )




. 2. Why, at low Mach numbers, is the CFL criterion used
to get the time step for the momentum equations ?
( 8t = 8x/[velocity + speed of sound] )

CONSERVATIVE FORM OF MOMENTUM EQUATION

3{pu) + Vepyu=-23p + ...
at X
uljl o + Vepy 1 4+ pdu + pyu*Vu = -ap + ...
at 3t ax
continuity
included, therefore Gtcont = stmom
Stability analysis, continuity and momentum --->
CFL condition 8t = &x/(u+c)
CONVECTIVE FORM OF EQUATION
POU + pUu‘Vu = -3p + ...
at ax
Stability analysis, momentum equation ---> &t = 8§x/u




3. Why not extend the method to laminar and turbulent flow %

What are the problems involved ?
RESOLUTION OF TRANSVERSE PRESSURE GRADIENT

[ [ [ [ L L/

o

Flat plate turbulent boundary layer 3ap/ay » 0

P = pRT

RT 8¢ - eRU 68U
Zcp

ép

8p dependent on continuity and momentum errors -

stability is highly grid and ét dependent
difficult without smoothing

Borrow idea from pressure correction methods -
Sp depends ohAly on continuity error.

RT é&¢

sp

[ -dpu - 3pv - dpw ] RT 6t
dx% dy 22

Stable without smoothing. Multi-volume approach
needed for highly nonuniform Sy grid spacing.

-~10-




4. Why does Denton use an interpolated pressure in
the momentum equation for transonic flow %
Can we show why and when it is stable %

Want 3pu + 3pv + dpw = O
ox oy oz
1-D stability analysis. e =9 + &p
u=u+ Su
Su »~» -~ C a{ép)/dx
ép ~ RT dp

Interpolated pressure

pi:.-(pRT)i or pi='5[(pRT)i+1+(pRT)i—1] or ...

Aiépi + Ai+1api+1 + Ai-lspi—l +...

Explicit method approximation

[1/6¢] 6pi = continuity error for control volume

Stability requires Ai positive and dominant.

-11~

= continuity error, each control volume




5. How can the method be extended to separated flow ?
(a) UPWIND DIFFERENCING

I
I
-—=>u o
|
|

i-1 i i+l
u>o0 u du/ax = u (ui - u;_4)/8x
u<o u dyu/adx = (-u)(ui - ui+1)/6x

--=> positive coefficient for ug

(b) UPWINDED CONTROL VOLUMES
- control volumes depend on local u

~—-> positive coefficient for Uy

-12-
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4. BACKFLOW - EXTENSIONS TO THE COMPUTATIONAL PROCEDURE

4a. Discretization of Convection Terms

The momentum and energy equations are discretized over control
volumes fixed relative to the grid points. Central differencing is
used except in regions where there are large cross flows or
backflow. In these regions a side upwind or reverse upwind
differencing is used for stability. The details are as follows.

Control volume for momentum or energy for point i+l, J.

b x J+1
N
| I
Bulk flow | |
direction W x x E J
—————————— > | I
I I
S
x x j=-1
i i+l

Convection of property ¢ where
u for x-momentum
v for y-momentum
h for energy (enthalpy) equation.

9
¢
¢

Convection term integrated over control volume

Seu-Vd dvol

SV pud dVol - ¢MIV'pu dVol

$oou-dA - ¢M§ou'dA
= (eutA)ydy + (purB)gdg + (PU"A)gop + (PU~A)yby
- oyl(eu-A)y + (PurA)g + (PutB)p + (PU"A)y]

We wish to express this in terms of the ¢’s at the grid points,
i.e we want the equation in the form

feu-Yé dvol Ceis1, 5 * %wli,5 * CEr®i+2, j

+ C

* Cug®i+e1, j+1 * Cnw®i, j+1 * Cse®i+1, 5-1 * Cswli, 5-1

14—



The coefficients C are determined from the mass fluxes through the
sides (epu-*A) and the discretization choice for ¢N’ ¢S’ ¢E’ ¢W, and

by -

For stability we wish the center point coefficient, C

positive and greater than the sum of the other positive
coefficients.

B’ to be

by

When [(pg'A)N+(ou'A)S+(ou'A)E+(ou'A)W] > 0
take ¢M = ¢,

to give a negative contribution to CW'

When [(pu'A)N+(ou'A)S+(ou'A)E+(pu'A)W] < 0

take Py = 541, 5

to give a positive contribution to CE'

¢E and ¢W
When (pu'A)E > 0

g = b5, 5

This centered evaluation of ¢E (second order accurate) gives a
positive contribution to CE.

When (pg'A)E <0

b = 0542, ;

This upwind evaluation of ¢E (first order accurate) gives a

negative contribution to CEE‘

This also determines ¢w since ¢E for one control volume is ¢W for
the next control volume.

=15~



¢N and ¢S
The geometrical centered evaluation for ¢N is

by = 0.5 [(1-F)(;,q s+; ) + Fldy,q 5,q+0; 5,401

where F is the fraction of the distance of the North face between
the grid points.

J+1 x

|
| b F = a/b
|
|

For accuracy this centered evaluation should be used whenever
possible.

For stability when

(PucA)y > O and (pu-B)p > O
take F < (putA)p/(eu-Aly

When the inequality is chosen, which for equal grid spacing will
occur when (PQ'A)N > Z(QQ'A)E,

(pQ.A)N¢N = 0'5(¢i+1,j + ¢i’j)[(pu.A)N - (OB'A)E]

+ 0.5(¢,

i+1,541 + O

When (pu-A)y > 0 and (pu-A)g £ O

(the primary flow is locally backwards or zero relative to the
bulk flow direction)

take by = P54,

By symmetry for (pg'A)S > 0 and (puA)g > O
take F>1- (pu-A)p/(pPu-l)g

For (PE'A)S > 0 and (pu'A)E £ 0

—-TA_



take ¢S = ¢i+1,j'

When (pg'A)N is negative, (pu'A)S is positive for the next, the
j+1, control volume, so that ¢N is determined from ¢S for the j+1
control volume. Similarly when (og'A)s is negative, ¢S is
determined from ¢N for the j-1 control volume.

Comparison with earlier scheme.

In these terms, Nicholson (Section 3, Report 5, JM/86-6)
considered only positive values for (PQ'A)E, i.e, no reverse flow.

The formulae he used for ¢M’ ¢E and ¢w were the same as given

here. However the upwinding he took for the cross flows was
different. In particular when (pg-A)N was positive, ¢N was

evaluated using

F < .:13. (PU B g (ot j-1)/(Pu-8ly + %

Taking F < (pg'A)E/(pu'A)N gives lower and hence more conservative
values of F when (pg'A)N > Z(OQ'A)E, i.e., where for uniform grid
spacing, the geometric F may not be used.

1 _ _ Present report
7

2/3 _— Nicholson

l
|
I
|
|
|
1/2 —————=

- Geometric,
uniform grid
1/3
0
0 0.5 1.0
(purA)g/(Purhly
high low
cross flow cross flow

F used in calculations.
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4b. Improved Pressure Interpolation for SBLI

The same Mach number dependent pressure interpolation formula
for the calculation of the density used earlier is also used here.
However to converge calculations with strong shock boundary layer
interactions, i.e. with shock induced separations, the Mach number
used in the formula needed to be changed from the local Mach
number to the local free stream Mach number. Since stability is
compromised if the Mach number is underestimated but not if it is
overestimated, for simplicity, the value used was the largest Mach
number on the relevant pair of i-surfaces.

x X > x x
I I
X x b 4 x *
| |
———=>
X | x X | x x
* ] * X pi+1 | x Pd
X | X X | X x
| - - - — - - |
Mmax for these points
= _1 (p; +a( -p.) + 21 ¢ -p. ) + 22 ¢ - )]
Piv1 © =T P;j * 8,{Pj417Py 5~ (il Pig 3= ‘Pis17Pi-2

ao(M) + al(M) + az(M) =1

M = Mach number = maximum Mach number at planes i and i+l.

-19~




4c. Evaluation of Turbulent Viscosity for the Present Test Cases

The turbulence model used in the calculations is a Prandtl
mixing length formulation

by T pLz"du/dy"

where the mixing length L is the smaller of

0.41ly (with a Van Driest correction)
or 0.086.

Sometimes it is difficult to determine an appropriate boundary
layer thickness, §.

For the present test cases

(a) UTRC, boundary layer separation geometrically triggered and
{b) Sajben diffuser, separation induced by shock,

the boundary layer thickness used to calculate L was changed to
obtain a reasonable separation when compared with the
measurements. The details of what was used to determine the
effective boundary layer thickness follow.

terminij th d bo r
The location of the edge of the boundary layer is determined
by the total pressure gradient Idpt/dyl. In particular a search

starts from outside the boundary layer (in the middle of the duct)
and proceeds towards the wall to locate where

dp, ' - (p, - p) *DPFACT
dy (local duct width)
This is the edge of the boundary layer for the mixing length

calculation. The larger the DPFACT the smaller the boundary layer
thickness.

Case DPFACT
(a) UTRC, sep. b.1. 2.0
(b) Sajben, pe/pO = 0.722 2.5

=20~



"Time™ 1 or boundar er thickness.

For case (b), Sajben pe/p0 = 0.722, shrinking 6§ by increasing

DPFACT was insufficient to correctly obtain the separation induced
by the shock. Qualitatively since turbulence is convected with the
flow there needs to be time for the turbulence to change - it does
not change suddenly. This was qualitatively introduced into the
calculation by lagging the boundary layer thickness used for the
calculation of L by 5 grid points. (The lag is between 0.5 and
0.75 throat heights through the separation region.) In particular
after i = 40 (x/h=1.7, upstream of the shock at x/h~2.4 but well
downstream of the throat at x/h=0) the mixing length in the outer
part of the boundary layer was obtained using

L{i) = 0.088(i-5).

The time lag was used only for case (b).

-21~



5. BACKFLOW - TEST CASES

The extensions to the computational procedure described in
section 4 were necessary for modelling two extreme cases of
separated flow, the UTRC separated and reattached flat plate
turbulent boundary layer (NASA Contract NAS3-22770, reference 1)
and the MDRL transonic diffuser flow with a strong shock (MDRL
Report No. 81-07, reference 2). These cases exhibit large boundary
layer blockage (displacement thickness/local duct height), large
backflow velocities, relative to the free stream velocity, and
high rms/mean turbulence levels in the backflow region. The
maximum boundary layer blockages were 58 percent (fifty eight!) in
the UTRC low speed (Uref = 27 m/s) flow and 27 percent in the MDRL

diffuser with a shock Mach number of 1.353. The maximum backflow
velocities were 37 percent and 25 percent, respectively, of the
local maximum free-stream velocity. The ratios of rms/mean axial
velocities at the locations of maximum reverse flow velocity were
35 percent in the UTRC flow and 66 percent in the MDRL diffuser.
If the backflows in the two cases were varying sinusoidally, these
values would correspond to maximum backflow velocities of -5.4 +
2.7 m/s amd -71.7 + 67.3 m/s, respectively.

UTRC Separated and Reattached Turbulent Boundary Layer

The geometry and streamlines for flow through the UTRC test
section are shown in Fig. 1; and laser doppler velocity
measurements are shown in Fig. 2. The corresponding calculated
velocity vectors together with the locus of points for which U=0
are seen in Fig. 3. The size of the reverse flow region is well
modelled, and the maximum calculated reverse flow velocity of -4.1
m/s agrees well with the measured maximum value of -5.4 m/s. This
good agreement for the reverse flow leads to reasonable agreement
between the measured and calculated values of skin friction
coefficient in the separation zone, as shown in Fig. 4. The
calculated locations of separation and reattachment are seen to be
close to the measured locations. The good agreement in the
separated flow region was obtained with the Prandtl mixing length
model by reducing the turbulent viscosity in the boundary layer as
discussed in section 4 (i.e. by using DPFACT = 2.0). This then
gave a corresponding decrease in the calculated skin friction
upstream and downstream of the separation zone, as seen in Fig. 4.
We conclude that the present explicit computational procedure can
be used for flows with extensive and strong backflow but that a
more sophisticated turbulence model is required.

-22-



MDRL Diffuser - Strong Shock Case

With a back pressure, pexit/Po inlet’ of 0.722, the MDRL diffuser

G had a shock Mach number of 1.353. Shock induced separation
occurred in the turbulent boundary layer on the curved top wall.
This contrasts with the case of 0.805 pressure ratio which gave a
shock Mach number of 1.235 and no separation. In this section,
results of calculations for these two flows will be compared, with
particular attention being given to the backflow in the strong
shock case.

The calculated shock locations are clearly seen for the two
cases in the contours of static pressure in Fig. 5. The strong
shock is located further downstream and shows evidence of a lambda
foot at the curved top wall. The computed shocks are both quite
sharp as a result of the use of the M&M pressure interpolation
formula (see section 3 of this report, reference 3).

For the strong shock case, the computed and measured static
pressure distributions on the top wall are compared in Fig. 6. The
computed shock is just downstream of the measured lcoation and is
therefore somewhat stronger with a shock Mach number of 1.39.
Upstream of the shock the static pressures are indistinguishable;
but downstream the calculated static pressures are consistently
higher than those measured, perhaps partly because of
three-dimensionality in the measured flow.

The Mach number contours in Fig. 7 show the flow accelerating
up to the shock and decelerating downstream. The top wall boundary
layer thickens appreciably more through the strong shock. This is
seen also in the velocity vectors of Fig. 8, which show the
separation bubble downstream of the strong shock. Fig. 9 shows
this calculated backflow in more detail, and for comparison the
magnitude and possible variations of the measured backflow are
also shown. The maximum calculated backflow velocity of -87.7 m/s
agrees quite well with the maximum measured value of -71.7 m/s.

Figures 8 and 9 demonstrate quite graphically the significant
blockage caused by the separation bubble; and this is also seen in
Fig. 10, which shows contours of total pressure.

We conclude that calculations of diffuser flows with strong
shocks and shock induced separation can be performed with the
present explicit method. As discussed in section 4, this
calculation required a time lag of the turbulent viscosity to give
a reduced viscosity in the separation bubble. In fact, this simple
modification to the turbulence model produced a dramatic upstream
movement of the shock and the calculation rapidly converged on a
shock location close to that measured. Again this suggests the
need for a more sophisticated turbulence model. But the present
study of strong backflows has clearly demonstrated that they can

-23-
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be modelled with an explicit method based on the finite volume
approach.
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6. MACH NUMBER DEPENDENT INTERPOLATION FORMULA
FOR DENSITY-UPDATE TIME-MARCHING METHODS

A 1-d stability analysis of density-pressure relations used in
the computation of transonic flow was performed in Report No.
JM/85-11 (see section 3 of this report, reference 3). Here we give
a parallel development of a density interpolation equation for

effective pressure for use in density-update methods. The formulae
considered are tested using the density-update scheme outlined in
Table 1.

Downwind Effective Pressure

In section 2.8 of reference 3, we considered an inconsistency
in the pressure-density relation such that the pressure used in
the momentum equation is offset by one grid point from the density
used in the continuity equation, i.e.

P; = fin1

RT. (40)

In a density update method this may be viewed as an effective
pressure evaluated downwind of its point of use in the momentum
equations. This pressure-density relation was found to be stable
for all Mach numbers, but it results in poor shock capturing as
the calculated shock is spread over numerous grid points. Fig. 1
shows the calculated and theoretical pressure distributions for a
1-d calculation with a nominal shock number of 1.45.

Mach Number Dependent Interpolation Formula for Effective Pressure

In section 2.6 of reference 3, we saw that when the Mach
number is high, the density update method is stable with the ideal
gas equation of state satisfied at each grid point, i.e.,

p; = ¢;RT, (73)

Since this is the correct pressure-density relation for ideal
gases it should be used where feasible. In this section, we will
start with a generalized density interpolation equation for
effective pressure

e _ a a _
Pi T Piyp T agley—Pyq) §1 (pi=Pi40) + 52 (P3=P343) (74)
with p. = peiRTi (75)
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and aj + a; + a, = 1 (76)

for second order accuracy.

We seek Mach number limitations to ay, ay and a, using the
stability criterion that

the center point coefficient must be greater than
the sum of the other positive coefficients,

Coefcenter > Sum Coef+ . (46)
Substituting
Sp. = | ao+31+32)69 + (l-a )ép 41 " 316°i+2 - 32691+3 (77)
RT 2 3 2 3
into Eq. 25 of reference 3 and rearranging in terms of the
coefficients of each Spi, 85, 284; and 2, vields (neglecting
variations of A, u and ¢ with i)
—Ac  {( 1l a, ) 8p.
S(M+1) 3 2 i+4
( la, -2 a, ) bp;
2 1 3 2 i+3
¢ -1 tag Tt 2 tlag ) desy
( 2+M8(M+1) - 3ao - % a, ) Gpi+1
(-1-M¥(M+1) + 3a0 + a, + % a, ) Gpi
( - a -1la, -13a,) 6p,_4 1}
o 5 1 3 2 i-1
= 1n'"czhange,i ) (78)
Now let us consider a simple second order scheme with a, = 0 and
a; = 1 - ag, and find limiting values of a,. From Eq. 74, it is

obvious that we should consider only values in the range
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0 < a, £ 1. (79)

In this range, the coefficient of Gpi+3 is positive or zero, and
for the coefficient of épi+1 (the center point) to be greater than

the coeffecient of épi+3, we require

a <3 + 2 ME(M+1). (80)
°© 5 5

The coefficient of Gpi is positive when
Zao - ME(M+1) > O or M(M+1) < 2ao/$. (81)

In this region, from Eq. 46, we require

2 + M§(M+1) - 3a_ > % -8+ 2a ) — MS(M+1) (82)
2
or a <1 + 4 ME(M+1) . (83)
°© 3 9

This criterion is more restrictive that Eq. 80 and the
corresponding stability limit is shown as a function of Mach
number in Fig. 2 for the conservative case of ¥ = 1.0.

A set of equations for a2y and aq; which satisfy the
stability criteria (Eqs. 80 and 83) and give second order accurate
interpolation (Eq. 76) has been selected; that is

a_ = 4 M(M+1)

°© 3
a, = 1 - a, (84)
a, = 0.

This Mach number dependent formulation for a, and a, is shown in

Fig. 3. These equations are referred to as the M&M Mach number
dependent interpolation formula for density-update time-marching
methods.
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Computational Tests of the M&M Density Interpolation Formula

In this section, results of shock capturing with the M&M
formula (Eq. 84) in the density update method (Table 1) are
prresented for Denton’s 1-d nozzle.

culatio
Number of axial grid points = 46, 6x =1
At inlet i=1, M = 0.80
For air k =1.4, R = 287. J/kgk
Pexit/Pt,inlet = 0.85, 0.80, 0.75

Results

The variations of static pressure, Mach number, and total
pressure for all three back pressures are shown in Fig. 4. All
three shocks are captured over four steps. The upstream side of
the shock is sharply defined with only minor deviations from the
theoretical 1-d solution. On the downstream side, there is a small
overshoot and undershoot in static pressure and Mach number over
two steps; the total pressure distributions show no overshoots or
undershoots and show a sharp decrease over two steps.

Concluding Remarks

It is hoped that the M&M density interpolation formula will be
useful to those organizations like NASA Lewis who are using
density-update time-marching codes. It is also hoped that the
stability analysis performed under this NASA Grant will be
enlightening to users and developers of time-marching codes.
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Table 1. Outline of Effective Pressure Method with Different Time Steps -

Density Update Scheme.
UNKNOWNS ( 2 - DIMENSIONS)

fsusvs (/u) ’ yV) s (feo) ’hO’P T
CONTINUITY

&+ V-pu) = 0 o)

8 = (- § (- dn) St/vol
porey
P = fRT

MOMENTUM (INVISCID)

Q (pu) +Ve(pw) u = -Vp (2)
TR o

USING EQ. 2 - (uor v) TIMES EQ. 1

fS“ = ('§(“(/’2)'d&+ pi-dd)
+ u§ (IOE)OdA))*g t /Vol

pEv = (-§ (vipw)eda + pioan)
+ v§ 903)-dé))*8 tm/Vol

u=u+du
vev+Sv
(/?u) = pu
(/W) -/Ov

ENERGY

ho = constant
2, 2

T = (ho-u;v )/Cp
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DENTON 1D EXAMPLE
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Fig. 1 Comparison of calculated and theoretical 1-D static

pressure distributions, PW = P/P

t,inlet”

theoretical;

calculated using a downwind effective pressure, Eq. 4

Grid spacing, 6x = 1; P /P = 0.80.

exit' " t,inlet
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STABILITY LIMITS, RO+Al=1
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Fig. 2 M & M density interpolation formula for use with

Effective Pressure, Density Update, Time Marching Methods.

Stability limits for a, when a, = 0 and a, + a = 1.
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MACH NUMBER DEPENDENT A'S WITH RO+R1=1
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M & M Mach number dependent values for the density interpolation

coefficients, a, and a,, in the Effective Pressure Method.
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DENTON 1D EXAMPLE AO=M» (M+11=xl4/9 A1=1-A0

PW

P/Pt,inlet

PW
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

o
o

10.0 20.0 30.0 uo.o 50.0

Fig, 4a Calculated 1-D solution for Denton's nozzle
using M & M density interpolation formula
with the Nicholson/Moore Effective Pressure,
Density Update Method.

Calculations for three exit static pressures at x = 46.,

/P = 0.85, 0.80, and 0.75.

P
exit’'“t,inlet
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DENTON 1D EXAMPLE AD=Mx (M+1) %x4/3 Al1=1-A0
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DENTON 1D EXAMPLE AO=Mx (M+1)%4/9 A1=1-R0O
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DEVELOPMENT OF A FINITE VOLUME TIME MARCHING METHOD

ABSTRACT

The objective of the current work is to develop and demonstrate a
Navier-Stokes approach for transonic flow which includes viscous
terms in the finite-volume method. The accuracy of the
computational method will be verified using a transonic diffuser
as a test case. The computational goal is to calculate the flow
in sufficient detail and with sufficient accuracy that the loss
generating mechanisms can be studied to assess the sources of
inefficiency in the transonic diffuser. The purpose of this
report is to document progress made in the development of the
time-marching finite-volume method from September 1984 to December

1984.
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Semi-Annual Status Report
on
NASA Grant No. NAG 3-593

Thermodynamic Evaluation of Transonic Compressor Rotors
Using the Finite Volume Approach

for the period
12/20/84 - 5/31/85

by
Stephen Nicholson
Instructor
and
John Moore
Professor of Mechanical Engineering
Principal Investigator

Grantee Institution -

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Turbomachinery Research Group

Report No. JM/85-6

Mechanical Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
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EXTENSION OF A FINITE VOLUME EXPLICIT TIME MARCHING METHOD TO

LAMINAR AND TURBULENT FLOW

ABSTRACT

This report documents progress made in extending the finite
volume explicit time marching method to laminar and turbulent
flow during the time period from January to May 1985. The work
done is under NASA grant NAG 3-593, Previously, extensions had
been made to the finite volume method to improve the accuracy of
the calculation of total pressure in compressible inviscid flow.
These changes are documented in reference 1 ., The current work
extends these ideas and develops new ideas which allow the
calculation of laminar and turbulent boundary layers in internal
flows. The method is verified using four test cases with

free-stream Mach numbers ranging from .075 to 1.20,
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Annual Report on NASA Grant No. NAG 3-593

Thermodynamic Evaluation of Transonic Compressor Rotors
Using the Finite Volume Approach

for the period
12/20/84 - 12/19/85

by
John Moore
Professor of Mechanical Engineering
Principal Investigator

Stephen Nicholson
Instructor
and
Joan G. Moore
Research Associate

Grantee Institution -

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Turbomachinery Research Group
Report No. JM/85-11

Mechanical Engineering Department
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061
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Abstract

Summer research at NASA Lewis Research Center gave the opportunity
to incorporate new control volumes in the Denton 3-D finite-volume time~-
marching code. For duct flows, the new control volumes require no
transverse smoothing and this allows calculations with large transverse
gradients in properties without significant numerical total pressure

losses.

The summer research also pointed to possibilities for improving the
Denton code to obtain better distributions of properties through
shocks. Much better total pressure distributions through shocks are
obtained when the {nterpolated effective pressure, needed to stabilize
the solution procedure, is used to calculate the total pressure. This
simple change largely eliminates the undershoot in total pressure down-
stream of a shock. Overshoots and undershoots in total pressure can
then be further reduced by a factor of 10 by adopting the effective
density method, developed at VPI&SU, rather than the effective pressure
method. Use of a Mach number dependent interpolation scheme for pres-
sure then removes the overshoot in static pressure downstream of a

shock.

The stability of interpolation schemes used for the calculation of
effective density s analyzed and a Mach number dependent scheme, the
M&M formula, is developed. This formula combines the advantages of the
correct perfect gas equation for subsonic flow with the stability of 2-
point and 3-point interpolation schemes for supersonic flow.
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by
Stephen Nicholson
Instructor
and
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Professor of Mechanical Engineering
Principal Investigator

Grantee Institution -

NASA Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Turbomachinery Research Group

Report No. JM/86-2

Mechanical Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061
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ABSTRACT

This report documents progress made in reﬁn.ing-and improving the finite-volume explicit time
marching method (1, 2, and 3 ) during the time period from January to May 1986. The work is
done under NASA grant NAG 3-593. Previously, extension had been made to the finite volume

~ method to
1. improve the accuracy of the calculation of total pressure in inviscid flow (1).

2. extend the method to allow the calculation of laminar and turbulent boundary layers in internal
flows (2).

3. improve the shock capturing properties of the method by introducing a Mach number de-

pendent interpolation scheme for the pressure used in the calculating the density (3).
The current work extends these developments by
1. using the new pressure interpolation scheme in two dimensional viscous calculations.
2. including a more complete description of the viscous @sses.

3. introducing a criteria for the transverse upwind differencing which is a function of the ratio of

transverse and streamwise mass fluxes.

4. allowing the calculation of internal flow where boundary layers are present on both wall of the
duct.

Specifically, this report is broken up into three sections. Section 1 discusses in detail the manner
in which the viscous stresses are evaluated in the non-orthogonal, non-uniform grid. Section 2 in-

vestigates the convergence and presents results for calculations of laminar flow in a converging duct.
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Section 3 presents results for calculations of transonic turbulent flow in a converging-diverging

nozzle; the results are compared with Sajben’s measurements and calculations by other authors.
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Extension of the Finite Volume Method
to Laminar and Turbulent Flow
by
Stephen Nicholson
John Moore, Chairman
Mechanical Engineering
(ABSTRACT)

A method has been developed which calculates two-dimensional, transonic, viscous flow in ducts.
The finite volume, time marching formulation is used to obtain steady flow solutions of the
Reynolds-averaged form of the Navier Stokes equations. The entire calculation is performed in the
physical domain. The method is currently limited to the calculation of attached flows.

The features of the current method can be summarized as follows. Control volumes are chosen so
that smoothing of flow properties, typically required for stability, is not needed. Different time steps
are used in the different governing equations to improve the convergence speed of the viscous cal-
culations. A new pressure interpolation scheme is introduced which improves the shock capturing
ability of the method. A multi-volume method for pressure changes in the boundary layer allows
calculations which use very long and thin control volumes ( length/height = 1000). A special
discretization technique is also used to stabilize these calculations which use long and thin control
volumes. A special formulation of the energy equation is used to pr‘ovide improved transient be-

havior of solutions which use the full energy equation.

The method is then compared with a wide variety of test cases. The freestream Mach numbers
range from 0.075 to 2.8 in the calculations. Transonic viscous flow in a converging diverging nozzle
is calculated with the method; the Mach number upstream of the shock is approximately 1.25. The
agreement between the calculated and measured shock strength and total pressure losses is good.
Essentially incompressible turbulent boundary layer flow in an adverse pressure gradient is calcu-

lated and the computed distribution of mean velocity and shear stress are in good agreement with
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the measurements. At the other end of the Mach number range, a flat plate turbulent boundary
layer with a freestream Mach number of 2.8 is calculated using the full energy equation; the com-
puted total temperature distribution and recovery factor agree well with the measurements when a
variable Prandt! number is used through the boundary layer.
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APPENDIX B

An Explicit Finite-Volume Time-Marching Procedure
for Turbulent Flow Calculations

Stephen Nicholson, Joan G. Moore and John Moore

Mechanical Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

1. SUMMARY

A method has been developed which calculates two-
dimensional, tramnsomnic, viscous flow in ducts. The finite-
volume, time-marching formulation {s used to obtain steady
flow solutions of the Reynolds~averaged form of the Navier
Stokes equations. The entire calculation is performed in the
physical domain.

The features of the current method can be summarized as
follows. Control volumes are chosen so that smoothing of
flow properties, typically required for stability, 1is not
needed. Different time steps are used in the different
governing equations. A new pressure interpolation scheme {is
introduced which improves the shock capturing ability of the
method. A multi-volume method for pressure changes in the
boundary layer allows calculations which use very long' and
thin control volumes (length/height - 1000). The method is
then compared here with two test cases, Essentially incom-
pressible turbulent boundary layer flow in an adverse pres-
sure gradient is calculated and the computed distributions of
mean velocity and shear stress are in good agreement with the
measurements. Transonic viscous flow in a converging diver-
ging nozzle 1is calculated; the Mach number upstream of the
shock 1s approximately 1.25. The agreement between the
calculated and measured shock strength and total pressure
losses 1s good.

2. INTRODUCTION

The finite volume method has been used extensively to
solve the Euler equations for transonic flow including flow
at high Mach numbers. In internal aerodynamics, McDonald [1]
was the first investigator to use the time marching finite
volume method. Denton [2] extended McDonald's finite-volume
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method to three dimensions. Versions of Denton's method have
been used in 1inviscid-viscous {interaction programs for
turbomachinery calculations [3-5].

The scope of the present work was to extend a finite
volume method like that of Denton's to be able to calculate
laminar or turbulent flow in ducts. The new method has the

capability to calculate subsonic as well as transouic flow.

3. GOVERNING EQUATIONS

The unsteady form of the continuity equation, the x-
momentum equation, and the y-momentum equation, in integral
form, are used to obtain a steady-state solution for flow
through 2-dimensional ducts. The 4ideal gas equation of
state, the assumption of constant total temperature, and a
Prandtl mixing length turbulence model complete the governing

equations needed to solve for the unknown variables p, u, v,
P, u, and T.

For a finite control volume where we can assign one
value of density to the control volume, and for a finite time
step, 8t, continuity states that,

pn+1_pﬂ=5p=-[ffpg.di]3%§_l_ (1)

where the 1Integral 1s evaluated explicitly at the current
time step, n. In arriving at an expression which relates the
pressure change directly to the continuity error, we will
assume that changes in temperature are small in comparison to
other changes for one time step. Thus, we can relate changes
in pressure to changes in density through the 1deal gas
equation of state,

PPl _ pM a2 sp = -xr( [/ Pu * dﬁ] 3Vol (2)

For the method introduced in the current work, a non-conser-
vative form of the unsteady momentum equation is used. The
non-conservative form 1s used because it allows the use of
different time steps for the continuity and momentum equa~-
tions., The differences between the non-conservative and
congervative forms of the unsteady momentum equations are
associated with the unsteady and convective terms. Speci-
fically, we note that

3(pu) du
= +V°og_g=pg—t+pg-\79_ (3)
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and the right hand side of Eq. (3) can be rewritten as

32 82
p-5—t+pg'Vg=ort-+V°p_u_g-3(V-pg) (4)

When the right hand side of Eq. (4) is combined with the
pressure and viscous terms, the momentum equation in integral
form becomes

(g_)“"'1 - (" =68() = [-ff puu- dA+u[[ pu- da

Sl oy s+l Wy - )] gy (9)

To maintain stability, the properties must be updated in the

proper sequence. In the current method, the sequence is

1. update the pressure from the continuity equation;

2. update the velocities from the momentum equation using
the new pressure and old velocities and old density;

3. update the density from the ideal gas equation of state;

4. update the temperature from constant total temperature.

4, CONTROL VOLUMES

A new control volume has been Iintroduced for this
method. To eliminate the need for smoothing of flow proper-
ties, there must be as many control volumes across the duct
as there are nodes where these variables are calculated. We
need as many equations as unknowns. The control volumes also
need to be located so that errors in continuity and momentum
can correctly influence the changes in pressure or density
and velocity without smoothing. The current control volume
accomplishes this and 1is shown in Fig. 1. When calculating
the flux through a streamwise face of an element, the value
of the flow properties at the node on that face are used.
Linear interpolation is used to obtain the flux on the cross-
stream face,

LN LN W W W N L L WL N

[ ]
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. °
|
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Fig. 1 New Control Volumes



S. DISTRIBUTION OF PROPERTIES

The properties at node points are changed in the flow
field after each time step because the continuity and
momentum equations are not satisfied for a given control
volume. A decision must be made about which node, either
upstream or downstream, these changes should be allocated
to. The criterion used in determining where changes in
properties should be sent 1is that these distributioas result
in reduced errors in continuity and momentum. The current
method uses the following allocation procedure:

1. The pressure is updated through the continuity equation
and the pressure change is sent to the upstream node;

2. The u and v velocities are updated through the momentum
equations and the changes are sent to the downstream
node;

3. The density is updated through the 1deal gas equation of
state using an interpolated pressure.

6. PRESSURE INTERPOLATION PROCEDURE

As part of the updating procedure used by Denton [5], an
effective pressure 1Is used in the momentum equations rather
than the true thermodynamic pressure determined from the
ideal gas equation of state, This effective pressure 1s
needed because 1if the true pressure 1s used in the momentum
equations the solution may not converge. In the current
method, the density used in the continuity and momentum
equations 1s an effective density which may be different thamn
the density obtained using the ideal gas equation of state.
This effective density 1is wused to satisfy stability
requirements.

Starting with a generalized pressure Iinterpolation
equation for the effective density

(Pryy = Prop)

Prep = [Py + 2g(Pyyy = Pp) +a; ) +
. (Pryp = P1-2)] 1 )
b}
2 3 T,

Mach number limitations were sought for ag, 2y and ag such
that

which assures second order accurate solutioms. A set of

equations for ag, 23, and a) was chosen which satisfies two
stability criteria [6]. The equations are

-62-




0.8y r4
for M < 2 ag = (—3-J (;5 -l) ;a1 =1-ag; a;=0:
for M > 2 ag =03 a; = 4/M2 ; ap=1-2a; . (8)

These Mach number dependent formulations for g, a1, and a,
are shown in Fig. 2.

2

0 1 2 3
MACH NUMBER

Fig. 2 Mach Number Dependent Values for
Coefficients apg, aj, and a,

7. TIME STEPS

A unique feature of this method Is the use of different
time steps for the continuity and momentum equatioums.
Previous workers who have used explicit time marching methods
have used the CFL condition as a basis for determining
allowable time steps which maintain stability. The same time
step 1is used for bhoth the continuity and momentum
equations, In the curreant method, the expressions that are
used to determine the allowable time steps are; for the
momentum equations

st < = l (9)
u | o effl + , 2u ‘
= oy p(<5}r)2
and for continuity,
1
Stc < [ 5tm étm - " ] (10)
2RT — + + +
(602  (y)° IRTox| - |RTSy

where Gtm is the momentum time step, §t_ 1s the coantinuity
time step and v is an effective y-component of velocity.
The advantage of using different time steps is that, for low
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velocity regions of the flow, the allowable momentum time
step can be significantly larger than that allowed by the CFL
condition. These larger time steps allow the boundary layer
profiles to change more rapidly and enhance the convergence

rate significantly compared with a method which uses the CFL
condition.

8. BOUNDARY CONDITIONS

For viscous flow, at the upstream boundary, the total
temperature, freestream total pressure, inlet boundary layer
velocity profile, and flow angle are specified. Along the
downstream. boundary the static pressure is specified. Pres-
sures along the so0lid boundaries are determined from linear
extrapolation. For viscous flow, the values of the x-
component and y-component of velocity are set equal to zero
at solid walls.

9, TURBULENCE MODEL

A Prandtl mixing length model is used to model the
turbulent stresses. The model is

u = u + u - 2 nduu

eff L t ut pL a;-

L is smaller of 0.08 times the width of boundary layer
or 0.41 times the distance to the wall

Van Driest Correction
L = 0.41 "y"(1 - exp[~ "y” /p1/26 “g])

‘ = G, Ty
Near Wall Correction ueff uz My + e

10. MULTI-VOLUME METHOD FOR PRESSURE CHANGES

Control volumes are grouped in the boundary 1layer to
form a larger global control volume. The continuity error is
calculated for this global control wvolume and changes in
pressure are assigned equally to each of the upstream nodes
for each control volume making up the global control
volume, Then the global control volume is made successively
smaller towards the wall, This 1is shown schematically in
Fig. 3. The entire pressure change for one iteration at each
node within the multi-volume region is determined by adding
together all the pressure changes assigned to that node.

The multi-volume method propagates pressure changes
rapidly through the boundary layer and minimizes transverse
pressure gradients in the intermediate solution. The above
changes allow the calculation of boundary layer flows where
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the control volumes near the wall can have aspect ratios
(length/height) over 1000.

—— O vt Mttt ) N—

voL. 1 voL. 2 voL. 3 VoL. 4
Fig. 3 Multi-Volume Method for Pressure Changes
in the Boundary Layer

i11. TRANSVERSE UPWIND DIFFERENCING

When the control volumes become long and thin near the
wall of the duct, the fluxes through the top and bottom faces
of the control volume become more significant in comparison
to the fluxes through the streamwise faces. To strengthen
the diagonal dominance of the coefficient matrix, the
momentum fluxes through the transverse faces may be calcu-
lated using interpolated velocities upstream in the
transverse direction rather than the actual interpolated
values. The 1interpolation functions and the derivation of
the functions is discussed in more detail in Ref. 6.

12. SAMUEL AND JOUBERT INCOMPRESSIBLE TURBULENT BOUNDARY
LAYER

Incompressible turbulent boundary layer flow in a
diverging duct was calculated for test case 0141 of the

Stanford Conference [7]. The grid used in the present
calculations is shown in Fig, 4. The inlet velocity is 26
m/s.
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Fig. 4 Geometry and Grid for Samuel and Joubert

Figure 5a shows a comparison of the calculated skin
friction coefficient with the experimental results and with
the results from the Moore cascade flow program. The
agreement Is excellent. A comparison of the calculated
turbulent shear stress distribution, uv, with the experi-
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mental results 1is shown in Fig,

PLOT 1 CASE 0141 FILE 4

5b.

The agreement is good.
Figure 5c¢ shows good agreement also between the calculated
and measured velocity profiles at two locations in the duct.

v

0.006 |
° CFC
o CFPT
o CFFE
o004 1 «  MOORE
e  NICHOLSON
¢ s 112
1 ° ° x*% g -,
0.002 | L TN
- o
]
L]
0000 F | N , " N
1] 0S5 ] -] 2 2.5
X (m)
5a) Skin Friction Coefficient
PLOT 3 CASE 0141 FILE 28,29.30
004 [ 3 x-z.saul X=2.89m T X=3.39m. ]
. a®
. s MOORE
. s S&J DATA
y (m) . . . mcuonso»T
[ )
0.0z | e T e I .: 4
* < .
e $ )
4 > L]
W) i ) °t
000 o o € J.e. 7 laa & p
0‘ 0.0“" 0‘0(‘)2(; _f_lol;‘l 0.0(‘)20l 0.06[ 0;;2
uv/U; -
5b) Turbulent Shear Stresses
PLOT 4 CASE 0141 FILES 14.16
L L 9 J
o.10 X=2.87 @ . X=3.40 m
4 MOORE .
008 F © sSgI DATA , T N
¢ NICHOLSON s .
L ]
Y 0.08 } o 4 o0
L] .
. Py
L .
004 | .« 4 . ]
L] L]
: .o‘o
002 | .'ol -+ .o.
Y ;’ 3
000 | a o"‘z- L 2 .—’!'..
o s _— o5 n
usu,
5¢) Velocity Profiles
Fig. 5 Results for Samuel and Joubert

-66—




13. MDRL DIFFUSER CALCULATIONS

The diffuser geometry (Model G) 1is shown in Figure 6a
(8,91. Figure 6a also shows the computational grid used
which has 87 grid points in the axial direction and 20 poilats
across the flow., The inlet boundary layer thicknesses were
specified as 9% and 4.5% of the inlet diffuser height for the
curved and flat wall boundary layers, respectively. For this
calculation, the ratio of exit static pressure to the inlet
total pressure was 0.826. In the experiment, this test point
results in transonic flow in the diverging portion of the
duct with a Mach number of approximately 1.235 upstream of a
nearly normal shock, and the flow -remained fully-attached
throughout the diffuser at this test condition.

A contour plot of static pressure is shown in Fig. 6b.
The shock can be seen in the diverging portion of the duct.
The shock 1{s well defined as {llustrated by the high
clustering of contours at the shock, Figure 6c shows a Mach
number contour plot for the calculations. The calculated and
measured curved wall static pressures are compared in Fig.
7. The shock is well defined and no overshoot occurs in the
static pressure, r_ x

b
!
1
1
ﬂ

T i
- ki

LIt
+

a) geometry and grid

1N —

c) Mach number contours

Fig. 6 Geometry and Contours for MDRL Diffuser

Measured shock locations on the curved wall and in the
middle of the duct are plotted In Fig., 8 as a function of
shock Mach number, Mo , determined from the minimum wall
static pressures on the curved wall. The minimum wall static
pressure in the calculation 1is located at x/h = 1,5; this {is
taken to be the location of the shock. The Mach number
upstream of the shock was determined to be 1.256 from the
calculated total pressure ratio across the shock 1in the
freestream, This result is plotted in Fig, 8 and it agrees
well with the measured shock location. Comparisons of
calculated and measured velocity profiles (see Ref. 9) at two
axial locations along the duct are shown In Fig, 9. The
agreement 1s good. The mass averaged total pressure at the
diffuser exit divided by the inlet freestream total pressure
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is calculated from the numerical results to be 0.9615. This
compares well with the measured value of 0.965, obtained from
the data of M. Sajben and T. J. Bogar, midway between the
diffuser side walls.

The total CPU time for the MDRL diffuser calculations
was approximately 35 minutes on an IBM 3031.

14. CONCLUSIONS

An explicit finite volume time marching method has been
extended to allow the calculation of laminar and turbulent
flow in ducts, Both subsonic and supersonic flow can be
calculated with the method, Incompressible turbulent
boundary 1layer flow In an adverse pressure gradient was
calculated. The agreement between the calculated and
measured skin friction coefficient, turbulent shear stress
distribution, and mean velocity profiles was good. Transoanic
viscous flow through a converging diverging nozzle was
calculated. The computed and measured velocity profiles were
in good agreement especially near the exit of the nozzle,
The computed and measured shock locations were compared and
were found to be in good agreement. Viscous and shock losses
in the diffuser were well modelled,
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APPENDIX C

Explicit Finite-Volume Time~Marching Calculations
of Total Temperature Distributions in Turbulent Flow

Stephen Nicholson, Joan G. Moore and John Moore

Mechanical Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

1. SUMMARY

A method has been developed which calculates two-dimen-
sional, tramsonic, viscous flow in ducts. The finite volume,
time marching formulation 1is used to obtain steady flow solu-
tions of the Reynolds—-averaged form of the WNavier Stokes
equations. The entire calculation is performed in the physi-
cal domain. This paper Iinvestigates the iIntroduction of a
new formulation of the energy equation which gives improved
transient behavior as the calculation converges. The effect
of variable Prandtl number on the total temperature distribu-
tion through the boundary layer is also investigated.

A turbulent boundary layer in an adverse pressure gradi-
ent (M = 0.55) i{s used to demonstrate the improved transient
temperature distribution obtained when the new formulation of
the energy equation is used. A flat plate turbulent boundary
layer with a supersonic freestream Mach number of 2.8 is used
to investigate the effect of Prandtl number on the dis-
tribution of properties through the boundary 1layer. The
computed total temperature distribution and recovery factor
agree well with the measurements when a variable Prandtl
number 1s used through the boundary layer.
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2. INTRODUCTION

This paper 1is an extemsion of the work reported else-
where in this conference [1]. A review of the features of
the new method will be Included here but a more complete
discussion may be found in references 1 and 2.

The features of the current method can be summarized as
follows., Control volumes are chosen so that smoothing of
flow properties, typically required for stability, is not
needed. Different time steps are used in the different gov—
erning equations to improve the convergence speed of the
viscous calculations, A multi-volume method for pressure
changes in the boundary layer allows calculations which use
very long and thin control volumes (length/height = 1000).

3. GOVERNING EQUATIONS

The unsteady forms of the continuity equation, the x-
momentum equation, the y-momentum equation, and the energy
equation, in integral form, are used to obtain steady-state
solutions for flow through 2-dimensional ducts, This ap-
proach differs from our previous work (1] where the assump-
tion of constant total temperature was used Instead of the
full energy equation. The 1ideal gas equation of state and a
Prandtl mixing length turbulence model [1] complete the
governing equations needed to solve for the unknown vari-
ables p,u,v,P,u, and T.

For a finite control volume where we can assign one
value of density to the control volume, and for a finite time
step, 8t, continuity states that,

pn'*'l-pn:Gp:-[fprndﬁ]F‘% (1)

where the 1integral is evaluated explicitly at the current
time step, n. In arriving at an expression which relates the
pressure change directly to the continuity error, we will
assume that changes in temperature are small in comparison to
other changes for one time step. Thus, we can relate changes
in pressure to changes in density through the ideal gas equa-

tion of state.

pttl _ p? a2 sp = rT[ [] o bed ﬁ] 33;1 (2)

For the method introduced in the current work, a non-conserv-
ative form of the unsteady momentum equation 1is used. The
non-conservative form is used because 1t allows the current
method to use different time steps for the continuity, momen-
tum, and energy equations. The difference between the non-
conservative and conservative forms of the unsteady momentum



equation 1is assoclated with the unsteady and convectlive
terms., Specifically, we note that

3(pu) du
= +V-p22=pn+pB-VP_ (3)

and the right hand side of Eq. 3 can be rewritten as
du du

pﬁ+pg°vg=pﬁ-+v°pgg-g(v~pg) (4)

When the right hand side of Eq. 4 is combined with the pres-—
sure and viscous terms, the momentum equation in 1integral
form becomes

@™ - @ =8 = [ffpuu-dra+T [ ou-dnr

(5)

I Ey A G uen T s ] by

To maintain stability, the properties must be updated in the
proper sequence, In the current method, the sequence is:

l. update the pressure from the continuity equation;

2., update the velocities from the momentum equations using
the new pressure and old velocities and old density;

3. update the density from the 1deal gas equation of state;

4, update the temperature from the energy equation.

4, ENERGY EQUATION

For many calculations of transonic viscous flow, the
assumption of constant total temperature will give a suffi-
cient representation of the energy equation in the flow
field. By assuming constant total temperature, the computa-
tions are 1less expensive to run and the computer storage
requirements are less. The assumption of constant total
temperature is usually satisfactory 1if:

1. an adiabatic wall is assumed in the calculations;

2. no work 1s done on the fluid at the solid boundaries;

3. the Mach numbers in the flow flelds are low enough that
total temperature gradients within the boundary layer are
small; )

4. the Prandtl number 1s approximately 1.0,

For a Prandtl number of 0.9, the solution should not
deviate greatly from the constant total temperature assump-
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tion. However for high speed flow, the energy equation
should be 1included in the calculations especially if the
Prandtl number deviates greatly from 1.

Two forms of the Integral formulation of the energy
equation will be derived next.

The energy equation in differential form is

dE
t T

T+V‘ = =Y e + 9 . . v + v -V
3 Et u q [u (u u u u ] Pu

(6)
where the total emergy per unit volume, E., is
E =0 (e+ 1/2(u2+vz)) = pe, (7)
The left hand side of Eq. 6 can be rewritten as
BEt a(pet)
etV B UtV ree U (8)
and
a(pet) aet
gtV eeJu=e g teuc Ve (9
then, expanding the right hand side of Eq. 9, we get,
de 3e

t t .
Py tprpuc-Ve =pe—=+TVue, e (V+pu (10)

The procedure just outlined 1is identical to what was
done to the unsteady and convective terms in the momentum
equation (see Eqs. 3,4).

The heat flux vector, g, can be represented as

q = ~kVT (11)

Substituting Eqs. 8-11 into Eq. 6, we get
de
95?5=-V -puet+et(V *p ) =9V « (-kVT)

+ 9V . [‘E o (v u+uv 2? )] -7+Pu

(12)

The integral form of the energy equation is then
Get
o} O x 6Vol =

-[foue -da+e [[ou-da-[[ T da
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+ff{u-(wWu+uwwu')eaa-[fPu-daa

where e » 18 an average value for the control volume. As
with the momen tum equation, Eq. 13 has a

term e ff puedA, which removes the continuity error
contrigution to the energy error.

This form of the energy equation, when incorporated into
the current method, behaved poorly. Initially there were
large errors in continuity and momentum and these large er-
rors acted through this energy equation to cause errors in

the total energy for a control volume. This interaction was
destabilizing,

An alternative form of the energy equation will now be
derived. This alternative form has enhanced convergence
properties when compared with the above formulation. Brief-
ly, the energy equation 1is reformulated so that changes in
total enthalpy, h,, are calculated rather than changes 1in
total energy, e,, which was done previously. This allows us
to see the terms which cause departures from uniform total

temperature - for both the steady state solution and the
transient solution.

The total enthalpy can be defined in terms of the total
energy and the static temperature

ht =e, + P/p (14)
or

h, =e,  +RT (15)
Taking the derivative with respect to time and multiplying by
the density, we get

aht de

t aT
P =P 3 +p R 7T (1l6)

The static temperature T can be represented in terms of the
total enthalpy and the absolute velocity as

h 2
t A4
T=z - (17)
P p
Therefore
T 1 e ¥ (18)
3t C_73t C_at
P p
Substituting Eq. 18 into Eq. 16, we obtain
de sh
t_op t R av
S i 1l oA (19)
P
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where Y 1s the ratio of specific heat capacities and V 1s the
magnitude of the wvelocity vector. Using equations (19) and
(14) to eliminate e, from equation (12) we get

oh

p t=l--. _P L[] .
73 v P u ht + (ht 3—)(V P 2) + F+kVT

(20)
+ 0 [u- (uu +u7 o] —p%—V-?rY:
Using h, = C

p
p T + V2/2 and k = u Cp/Pr, kVT may be replaced
by

2
=X _k v
KT = o= Vh - &= V(‘z‘) (21)

and from continuity we may replace Vep u with =3p/dt,

Therefore the energy equation written as a conservation equa-
tion for total enthalpy is
ah .

P__t_ g . K

(1) (11) (1I1) (22)

+ Veu(l1 - %.r.)v(.‘z’_) + Veu(uev) u +.§3r‘: - %5 ' %‘é
P

(1Iv) 42 (VI) (VII)

Terms I and II when combined give - p u ¢ Vh_,. Therefore
terms I + II and III contain h, only in the form Vh_. Thus,
when these are the only important terms in the equation, flow
with uniform total temperature at the inlet will retain this
uniform total temperature provided that the boundary condi-
tions are consistent with this,

Term IV is a viscous transport term for total enthalpy when
the Prandtl number is other than 1., Term V 1is another vis-
cous transport term, It however contains the expression
(u * V) u which is the gradient of the velocity in the direc-
tion of the velocity; these gradients are usually small com-
pared with other velocity gradients. Since terms IV and V
have the form V * ( ), they are not source terms, rather they
can only redistribute the total enthalpy. Terms VI and VII
on the other hand have the form of source terms. Relative to
the steady state, they are proportional to the continuity
error and the momentum error, respectively, We may write
them as

M=2 %% +m %% (23)

At the steady state, Eq. 22 becomes
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b 1 ,o(V2
0=-Vepuh +V = Vh +7eu(l -P_r)v(_)
2 (24)

+Veu(us9v)u

Therefore we may artibrarily alter the variables 1 and m in
Eq. 23 and the steady form of the energy equation, Eq. 24,
will be obtained for converged solutioms. The transient
behavior of he is improved in the calculation procedure by
choosing 1 = m = 0, i.,e. by omitting the transient source
terms in the enthalpy equation,

In integral form then the equation for enthalpy changes 1is
Sh

Py Vol =vy{- [ ounh +dA+R [fou-da
(25)

+ff‘lj_t\7ht-.d_4+ff[(u-%;)3-v3T+u3.v3]~dA

H e Ve

where u = uy + ut and T = FE; + F?: .

The time step used for the enthalpy equation is the same as
for the momentum equation, If the transient source
term%i—% had been retained in the enthalpy equation, it

would have been necessary to link the continuity and energy
equation time steps., Omitting this term allows us to use

different time steps for the energy equation.

5. TEST CASES

Two test cases will be used to explore various aspects
of the more complete form of the energy equation, Eq. 25,
discussed previously.

5.1 Turbulent Boundary Layer in an Adverse Pressure Gradient

The geometry and grid used in this test case are shown
in Fig. 1. Flow in this geometry was used in Ref. 1 to test
the accuracy of the new computational scheme. In Ref, 1 the
velocities in the duct were low enough that the flow could be
treated as Incompressible. Here, the inlet freestream Mach
number was increased to 0.55. The purpose of thils test case
was to i1llustrate the advantage of the new formulation of the
energy equation. ‘

The static temperatures presented in Fig. 2 are from

calculations after 500 iterations. It can be clearly seen
that the new formulation, Eq. 25, gives a better transient
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solution to the energy equation and it should result in a
reduction in the computer time required to reach a steady
state solution. Fig. 3 shows the corresponding total temper-

ature profiles for the two formulations of the energy equa-
tion.
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Fig. 1 Grid and Geometry Used to Demonstrate the
Advantages of the New Formulation of the
Energy Equation
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Fig. 2 Static Temperature Distribution Through
the Boundary Layer at M=0.55, x=200 mm,
after 500 iterations

5.2 Flat Plate Turbulent Boundary Layer at M = 2,8

Van Driest [3] presents the total temperature distribu-
tion within a flat plate turbulent boundary 1layer with a
freestream Mach number of 2.8. The experimental total tem—
perature distribution is shown in Fig. 4., The geometry and
grid for these calculations are shown in Fig, 5. The height
of the duct was 63.5 mm and the length of the duct was 254
mm. The computational grid shown in Fig., 5 consists of 21
axial grid points and 14 transverse grid points. The inlet
boundary layer thickness of 6.35 mm was 10% of the duct
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Fig. 3 Total Temperature Distribution Through the
Boundary Layer at M=0.55, x=200 mm,
after 500 iterations

height. The_Rey;nolds number based upon axial distance is
approximately 10 To stabilize these supersonic flow
calculations, the upwind effective density method was used
[2]. This means that an effective density used at a grid
point is calculated with the 1ideal gas equation of state
using the pressure from the next upstream grid point. The
inlet velocity, total temperature, and total pressure were
specified at the upstream boundary. Three calculations were
performed with different assumptions about the turbulent
Prandtl number. These assumptions were

1. Pr, = 0.90 }?1':2 = 0,73
2. Pr, = 0.73 Pr, = 0.73
3. Pr, varies linearly through the boundary layer from 0.9

at the wall to 0.66 in the freestream,

The turbulent Prandtl number 1s typically set equal to a
constant of 0.9 in calculations [4]. The calculated total
temperature distribution through this boundary layer using a
constant turbulent Prandtl number of 0.9 is shown in Fig. 6
(represented as 0 ). The recovery factor 1is calcu-
lated to be 0.920 which compares with the empirically deter-

"mined value of 0.90, However, the distribution of total

temperature through the boundary layer does not compare well
with the experiment. If the turbulent Prandtl number is set
equal to the laminar Prandtl number of 0.73, the total tem-
perature distribution changes as seen in Fig. 6 (represented
at O's). The distribution through the outer part of the
boundary layer has improved but the recovery factor of 0.813
does not compare well with the experimental value of 0.90.
Schlichting [5] notes that the turbulent Prandtl number {is
not constant through the boundary layer. The experiments of
H. Ludwieg [6] for turbulent flow through a pipe show that
the Prandtl number varies from approximately 0.9 at the pipe
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wall to 0.66 at the center of the pipe. This distribution is
shown in Fig., 7. The variation 1is almost linear., For the
third set of calculations, the Prandtl number was assumed to
vary linearly through the boundary layer from 0.9 at the wall
to 0.66 at the edge of the boundary layer. The total temper-
ature distribution for this case is shown in Fig. 6 (repre-
sented as\'s). The total temperature distribution calcu-
lated using a variable Prandtl number is also compared with
the experimental results in Fig. 8. Both the distribution of
total temperature through the boundary layer and the recovery
factor of 0.90 are in good agreement with the experimentally
measured values,
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Fig. 7 Ratio of the Turbulent Transfer Coefficient Over
the Length of a Radius in Turbulent Pipe Flow
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Fig. 8 Total Temperature Distribution For Flat Plate
Boundary Layer at M=2.8 Computation vs. Experiment
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6. CONCLUSIONS

A new formulation for the energy equation was introduced
which has improved transient behavior when compared with the
standard formulation. The new formulation removes the 1n-
fluences of continuity and momentum errors from the energy
equation during transients in the solution.

For flat plate turbulent boundary layer flow with a
freestream Mach number of 2.8, the calculated total tempera-
ture profile was improved by using a variable Prandtl number
through boundary layer. The recovery factor of 0.90 agreed
very well with the empirically determined value of 0.9.
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